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Abstract 
Computational or scientific simulations are 

increasingly being applied to solve a variety of 
scientific problems. Domains such as 
astrophysics, engineering, chemistry, biology, 
and environmental studies are benefiting from 
this important capability. Simulations, however, 
produce enormous amounts of data that need to 
be analyzed and understood. In this overview 
paper, we describe scientific simulation data, its 
characteristics, and the way scientists generate 
and use the data.  We then compare and contrast 
simulation data to data streams. Finally, we 
describe our approach to analyzing simulation 
data, present the AQSim (Ad-hoc Queries for 
Simulation data) system, and discuss some of the 
challenges that result from handling this kind of 
data.  

1- Introduction 
Scientific simulation is used in a variety of 

scientific and engineering disciplines. In general, 
a simulation performs an experiment 
computationally rather than physically. In 
scientific fields such as physics, chemistry  and 
climatology there is substantial interest in the 
development and verification of simulations that 
accurately model the associated physical 
phenomena.  In some cases, the phenomena of 
interest may not be experimentally controlled. In 
other cases, experimentation maybe prohibitively 
expensive, dangerous or physically impossible. 
These models then play a critical role in 
understanding and predicting the behavior of 
complex systems or experiments, and in scientific 
discovery in general. Examples of simulation  
experiments include, but are not limited to:  
• Climate simulations which are capable of 

predicting both large-scale global and small- 
scale local weather patterns. 

• Computational biology simulations that 
predict the interaction of new drugs with 
receptor sites. 

• Astrophysical simulations  that describe a 
phenomena ranging from the formation and 

evolution of single stars, to galaxies and 
ensembles of galaxies. 

• Nuclear weapons simulations that ensure the 
safety and efficacy of the nation’s weapons 
stockpile without testing. 
These examples demonstrate the spatial and 

temporal ranges over which scientific simulations 
may be applied. Time scales can range from 
femtoseconds to decades and distances can range 
from microscopic to galactic [1]. Running a 
simulation can require thousands of processors 
and produce petabytes of data. Such massive 
computations have become feasible due to the 
current generation of massively parallel 
computers and their associated file systems. 

This ability to generate complex and vast 
amounts of data, however, will overwhelm 
current computational infrastructure. Effective 
storage and archival algorithms must be devised 
to cope with these volumes of data while 
ensuring the data is retained for both future 
reference and validation of new results.  
Querying the simulation results, either while they 
are being generated or after they have been 
written to the file system, is an enormously 
expensive task. Imagine trying to locate a single 
piece of information in several hundred data sets 
where each data set is on the order of petabytes. 

One possible solution is to summarize such 
data sets and save a compressed yet 
representative summary. Another interesting 
approach is to treat the data set as a data stream, 
processing the query in real-time as the data is 
being generated. While not all queries can be 
easily executed against these data streams, those 
that can are  able to scale to the large data sets 
that the simulation produces 

In this paper we discuss the challenges of 
querying simulation data, our approach to 
handling them, and how this approach is similar 
to the techniques used by the data streaming 
community.  

2- Scientific Simulation Data 
The nature of scientific simulation data is 

strongly dependent on the numerical technique 
employed by the simulation. Numerous formats 
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are used to describe and store simulation data.  
One such format developed and widely used by 
Lawrence Livermore National Lab is called Silo. 
For a complete description of the Silo abstraction, 
the reader is advised to look at the web address 
http://www.llnl.gov/bdiv/meshtv/manuals.html   

Files in the Silo format may be viewed in 3-
D using a viewer called Mesh-TV. For practical 
reasons, we have adopted the Silo data format for 
our work, although our approach is generally 
applicable to any mesh format. The images 
shown in this paper were created using meshTV. 
For a more detailed description of mesh data see 
[2].  

 
Types of Meshes 

Scientific simulations are discrete 
approximations to problems defined on 
continuous media often called a “base space.” 
Obviously, it is impossible to compute and store 
the values of the variables of interest (e.g. temp, 
pressure, velocity) at the infinitely many points 
present in any problem.   

Instead, the base space is discretized into a 
finite number of volumes or “zones.”  For 3-D 
data sets, each zone is comprised of a set of 2-D 
faces, which are themselves made up of an 
ordered collection of vertices (or points in 3 
dimensions).  For example, a base space may be 
discretized into cubes each of which is made up 
of 6 faces, 12 edges and 8 nodes.  The collection 
of  zones used by the simulation to define the 3-D 
space being modeled is typically called a mesh. 

Meshes are generally categorized as either  
structured or unstructured.  Structured meshes are 
regularly ordered collections of the same element. 
Quadrilateral meshes are a specific example of 
structured meshes, in which there are a prescribed 
number of hexes or quads in each dimension. 
Unstructured meshes by contrast are collections 
of arbitrarily shaped zones with complex 
connectivity relationships. Such meshes require 
an explicit description, usually in terms of the 
nodal connectivity of each zone, and are thus 
usually much more expensive to represent than 
structured meshes. 
 
Types of Variables 

Variables are represented as values at any 
point in the mesh.  The two most common types 
of variables are “nodal” and “zonal” variables.  In 
the case of nodal variables, the values are 
associated with each node in the mesh.  The 
variable value at points between the nodes can be 
found by interpolating the nodal values. These 

interpolating functions are typically linear 
although higher order interpolants are sometimes 
used.  In the case of zonal variables, the values 
are associated with each zone and the variable is 
typically constant throughout the zone.  In some 
cases, variables have complex values, such as 
vectors. Figure 1 shows a region of a mesh for an 
exploding star. The colors (or various degrees of 
shade) in the figure reflect a variable called xdot 
(the speed in the x direction). The arrows on the 
figure are the velocity vectors  

 

 
Figure 1: A 3-D plot of an exploding star with 
the speed and velocity shown on its surface. 

To minimize storage requirements it is 
common to store only the fundamental variables 
from a simulation. Ancillary results that may be 
derived from the fundamental variables are not 
explicitly stored to save space. An example of 
such a derived variable is the scalar quantity 
speed which is easily derived from the velocity 
vector shown in Figure 1. 

This complex structure of the data causes the 
data size to grow rapidly and makes querying and 
visualizing the data a challenging task. 

3- Data Streams and 
Scientific Simulation Data 
Data streaming is an area of active research 

in the database community. Data streams differ 
from conventional stored data in several ways 
[7]: 
1. The data elements in the stream arrive 

online.  
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2. The system has no control over the order in 
which data elements arrive (within and 
across data streams).  

  Write restart file; 
  Visualize(); 
  Modify parameters_if_needed; 
  Restart simulation; 3. Data streams are potentially unbounded in 

size.   Else  
  If (remainder (time / M) == 0)) 4. Once an element from the data stream is 

processed, it is discarded or archived and 
cannot be retrieved easily.  

   Write plot-files; 
endif 

 endif 
While technically finite in size, simulation 

data can grow to be arbitrarily large; multi-
gigabyte data sets are considered tiny and multi-
terabyte data sets are common. While most 
simulation data sets are archived on tertiary 
storage after analysis, some are discarded because 
of storage limitations.  

} 
The simulation writes out restart files every 

N cycles (or simulation timestep). The restart 
files contain enough detailed  information about 
the simulation status to allow it to be restarted 
from the current time. Plot files are written every 
M cycles where M < N. To determine the validity 
of their simulations, scientists visualize the 
dumped files with a tool such as Mesh-TV. If 
they encounter an error, they modify the 
simulation code, the input parameters, or both 
and rerun the simulation.  Given the volumes of 
data involved, waiting until the entire simulation 
completes to evaluate it is inefficient. 
Furthermore, manually examining the images one 
by one and this is a lengthy and error prone 
process.  

Scientists would benefit from being able to 
quickly answer some of their queries while data 
is being written. For example, queries that test for 
tangled meshes or extreme variable values can be 
used to determine if the simulation is executing 
properly or not. By identifying a problem early, 
scientists can abort erroneous runs and restart the 
simulation with new initial conditions. This is 
important because simulation runs are very 
expensive and they take a long time to finish. 

There are two ways we can utilize data 
streaming algorithms to help scientists:   

This example shows that real-time  analysis 
of simulation data is needed to help the scientists 
verify the simulation code. In addition it is 
needed after the simulation has been verified in 
order to steer the computation by changing the 
simulation input parameters. This allows the 
scientists terminate an experiment earlier if the 
results are deviating from what is expected 
because input parameters need to be changed and 
not because of error in the code. 

1. Preprocessing, summarizing, and 
compressing,  the data to query or analyze in 
the future. To do this effectively requires a 
one pass algorithm, similar to those used by 
data streams. The requirements for one pass 
algorithms is due to the data size. 

2. Executing queries on the original data while 
it is being generated. These queries will be 
executed in near-real-time, and would be 
similar in capability to data streams.  

 Real-time analysis is very hard and may 
require coupling the analysis algorithms with the 
simulation computation. However, there are some 
success stories for computational steering with 
quasi real-time visualization. An example of such 
successful application is the Cactus system where 
the code was configured to allow remote 
visualization and steering [12]. It is difficult to 
apply this approach to our environment for 
several reasons. First, our data is highly 
dimensional. Second, our users are interested in 
relations between variables, not only the values 
of certain variables. For example, they might 
want to see what is happening to variable “P” if 
variable “T” is increasing. Finally, the size of the 
generated data sets does not allow real-time 
visualization.  

In the next section we will discuss the details 
of using these two approaches 

4- Querying  Scientific 
Simulation Data 
Simulation data is highly dependant on the 

application, hence,  it is hard to come up with one 
set of requirements for data processing across 
applications.  

While developing a new simulation code, the 
scientists must verify both the underlying 
mathematical model and the implementation. As 
a result, they spend a lot of time verifying the 
simulation. The algorithm for running the 
simulation can be summarized as follows Once the simulation is complete, the 

scientists are interested in analyzing the data and 
comparing it with experimental results or with 
other simulations. This analysis is done on the 

While (true) 
{ Compute; 
 If (remainder (time / N) ==0) 
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To satisfy these requirements we create an 
approximate, multi-resolution synopsis of the 
data in a format that maintains the outliers. We 
use this approximation to compress the data and 
create efficient indexes for query processing.  
AQSIM is designed to work off-line after the data 
has been generated and it requires the synopsis to 
be generated before the data is queried [3,4,5,10]. 
The implementation has evolved over the last two 
years to include a simple statistical model, a  
wavelet model, and a clustering model. For more 
details the reader is referred to [4,5]. The latest 
AQSIM implementation utilizes a bottom-up 
agglomeration algorithm that uses the topology of 

simulation results (plot and restart files) after they 
have been generated.  In this mode, the scientists 
might be interested in more complex queries, 
such as following a certain phenomena or tracing 
the values of a variable over the course of time, 
or comparing it to experimental results.  

Ad-hoc Query Simulation System 
(AQSim) 
AQSim is an ongoing effort to design and 
implement a system to analyze terabyte-sized 
scientific simulation data sets (Figure 2). The 

Simulation data 

the mesh to create the multi-resolution hierarchy. 
The algorithm starts by collecting the fine cells in 
the grid into a coarser cell. The algorithm is a 
two-pass algorithm to guarantee that it will 
produce the best topology representation. The 
data within the cells are propagated upwards to 
the coarser cells using simple statistical 
information such as number of points, min, max, 
mean, and standard deviation. The coarse cells 
use bounding boxes to define their associated 
spatial regions. Because the finer resolution cells 
will not generally fill this bounding box, each cell 
also has an associated percentage filled. After 
that the resulting tree can be pruned in order to 
save space. The pruned tree supports processing 
the queries faster, however, most answers will be 
approximate.  

main goal of AQSim is to reduce data storage 
requirements and access times while permitting 
ad-hoc queries using statistical and mathematical 
models of the data 

Results 

Create 
synopsis 

 Index 
files 

Index 
Searcher Time-constrained  

query 

Mesh 
generator 

Figure 2: A diagram of AQSIM data flow.

Users can also limit the time if they are not 
willing to wait for an answer. In this case, the 
result will obviously be a lower resolution mesh. 
A priority is used at query time to decide which 
cell should be traversed first. This priority is 
based on a combination of a cell’s percentage 
filled and how well it answers the specific query 
being asked. This priority based traversal of the 
multi-resolution tree allows us to generate the 
best possible mesh for the given time constraint.  
Currently, we are focusing on improving the 
efficiency of our out of core algorithms and 
parallelizing the implementation. 

Using data stream terminology, we are 
processing our data in a batch mode. This choice 
was made because we cannot control the rate of 
the data dumps, we have to save the restart files 
under any circumstances, and the time consuming 
step of creating the data summary is considered 
part of the query. In other words, this fits the 
traditional batch processing mode in which 
updating the data is faster than query processing.  

The design of AQSIM is heavily influenced 
by the following three facts 
1- The size of the data generated is huge and 

scientists are not able to keep it on secondary 
storage for a long time. 

2- Scientists are willing to accept approximate 
answers when  returned in a reasonable time, 
as long as there are no false negatives.  

3- Scientists do not like to sample the data 
because sampling cannot capture the outliers 
that are important to them. 

We are looking into the possibility of 
extending the system by adding  a direct query 
capability that allows querying the data in its 
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Table 1 lists a set of queries, the time it took 
for each query in seconds, and the number of 
elements retrieved. These queries were run on a 
1.5-GHz Pentium processor Linux workstation 
with 512 MB of memory and using a single 
processor. The data was accessed over a 1-Gb 

Ethernet connection. Table 1 shows that when the 
query retrieves more zones, the time increases but 
not linearly. This is primarily a result of the query 
engine moving from in-core to out-of-core data 
structures and the associated disk accesses. To 
speed up the queries we are working on creating a 
more efficient index format, and parallelizing the 
approximate query engine. 

original format. Since this would drop the 
preprocessing step, computing the answer to the 
many queries (including writing the data) will be 
relatively fast. In this case we could run the query 
quasi real-time on the data. It is important to note, 
however, that some queries, such as those 
requiring extensive topology information or a 
value to be computed globally, cannot be 
answered using this configuration. For example 
locating zones where the temperature does not 
exceed half of the maximum temperature could 
not be executed because it requires knowing the 
global maximum of a variable. 

 
Query Time Zones 
ydot > 0.4 and ydot 
< 0.5 and X > 0 and 
Y > 0 and Z > 0 

48.86 38898 

ydot > 0 and X > 0 
and Y > 0 and Z > 0 

279.43  380035 

ydot > 0 and Y > 0 
and Z > 0 

633.18 738265 

Table 1: Query time and selectivity (number of 
zones retrieved). 

Results 

 

We have also prototyped a parallel 
implementation of the direct-query capability. 
We ran the same set of queries on MCR (a linux 
cluster) distributing the data over 16 processors 
(one time step per CPU). The direct-query 
prototype took 38 seconds to  execute each query. 
The time was consistent because the direct-query 
does not use a multi-resolution hierarchy, instead 
it linearly scans the entire data set for each query. 
From the query time perspective, our initial 
approach will outperform the direct approach 
when the query selectivity is high enough to 
require scanning only a small  part of the tree.  

Figure 3: Query: “ydot > 0.4 and ydot < 0.5 
and X > 0 and Y > 0 and Z > 0”. 

 
We have an early prototype of AQSIM that 

can be used to query simulation data. We shared 
our initial results with some scientists and they 
are excited about it. The system will provide 
opportunities for understanding the huge amounts 
of data that they have been collecting. To enable 
data analysis, we use a simple query language 
that can support user-defined functions. 

By enabling the direct-query capability on 
parallel machines, the scientists can devise 
queries that  allow them to verify the simulation 
without examining the individual files or 
performing an expensive preprocessing step. On 
the other hand, the approximate approach is more 
appropriate for highly selective queries (which 
we expect to be the typical case), complex 
queries such as those requiring topological or 
global information, and offline analysis since the 
data set size will be much smaller and 
manageable.  

Figure 3 shows the results obtained from the first 
query listed in Table 1 on a 5-GB astrophysics 
simulation of a star. This data set contains 
approximately 26 million zones spread across 16 
time steps. The resulting mesh, shown in Figure 
3, has the highest resolution possible since the 
query was not time constrained. Although, the 
query was performed on the data synopsis, the 
resulting mesh is extremely close to the original 
one. The query retrieved 38,898 zones in 
approximately 48 seconds.  

5- Related Work 
The database community has been very 

active in the area of high-dimensional data and 
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work on both managing and providing efficient 
algorithms to help understand it. The literature 
has many papers that describe data streams and 
how are they different from the traditional 
database approach. [7] is an excellent paper that 
summarizes the research in data stream systems.   

 [8] discusses the feasibility of building data 
stream systems for Online Analytical Processing 
(OLAP). To our knowledge, it is the only paper 
that discusses data streams applied to scientific 
data, and we are not aware of any work that 
looked into simulation data from this perspective.  

There are several efforts such as [9], to 
describe data models to support data generated 
from physical experiments. The most relevant 
effort is the sheaf data model, which has evolved 
from the fiber bundle model that was introduced 
by Butler and Pendley in 1989 [11]. 

6- Conclusions 
In this paper, we introduced scientific 

simulation data, the way it is generated, and how 
it is used. Important similarities exist between 
simulation data sets and data streams to the point 
where simulation data can be viewed as a special 
case of data streams. We used these similarities to 
show how are we utilizing data streams concepts 
in building AQSIM. We showed initial results 
and discussed some of our plans to extend the 
system. The initial response from our prospective 
users was very promising.  
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